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Abs_ad

A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of

the engine, is developed. This model is obtained by linking linear state space models obtained at different engine

operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable

system identification and realization method. The simplified model may be used with a model-based real time

diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed

loop control analysis utilizing a user generated control law.

Nomenclature

Variables

A, B, C, D, E, F, G, K, Z state space matrices

N, gas generator speed
N m main rotor speed

Np power turbine speed

Ps3 static pressure at station 3

QR required torque

Qs engine shaft torque
T4_ interturbine gas temperature

u engine model input vector
W_ fuel flow

x engine model state vector

XCPC collective pitch

y engine model output vector

Greek symbols
8[variable]

B

normalized deviation of variable from nominal

observability index

Subscript
m model

'This work was supported by the U.S. Army under grant number NAG3-1198.



In_oducfion

Full nonlinear, component-based turbine engine simulations have, generally, been large, slow, unwieldy computer
programs which require large amounts of computing power and time to produce small amounts of data. Due to their

size and complexity, however, these nonlinear simulations are difficult to use for various control design and
diagnostics studies. In this paper, a simplified state space model of the T700 engine is developed which can be used

for control system design and model-based fault detection and diagnostics studies. This simplified model is

developed using the data generated from a component-based real-time simulation of a TT00 turboshaft engine which
is described in [ 1].

Customarily, the development of simplified real-time turbine engine simulations involves creating piecewise linear

state space perturbation models [2] at several operating points, enough to cover the operating range of interest. The

set of linear systems covering the operating range is linked, sometimes using a curve-fitting technique, so that the

resulting equation contains matrices whose elements are described by polynomials evaluated at the current operating
point. This methodology was used in [3], [4], and [5].

In this paper, the procedure used to develop a simplified dynamic model of the T700 turboshaft engine is described.

This approach was successfully applied to obtain simplified models for control and diagnostics design in other

propulsion systems, for example [6]. Linearized dynamic models of the engine at five different operating conditions

were obtained by using a multivariable system identification and realization technique [7] with the input and output
data generated from the nonlinear simulation described in [l]. The simplified model, covering the whole range of

operation of the engine, was then developed by combining the point models. The accuracy of the simplified model

was checked by comparing the responses of certain engine variables to the corresponding responses from the

nonlinear simulation for an input signal which drove the simplified model through a range of operating points.

A possible application of this model is a model-based diagnostics scheme for fault detection purposes which
compares the parameters of the simplified model with the identified parameters of the actual system on a continuous

basis. The differences between the modeled and identified parameters may be analyzed to detect the presence, to

isolate the source, and to determine the extent of faults. Other applications for this model would include open loop
engine dynamics studies, and closed loop control analysis with a user-generated control law.

The next section of this paper contains a description of the T700 engine. This is followed by sections describing
the modeling and the identification of the open loop dynamics of the engine. Next, results obtained from the
identified linear operating point models are compared with the results obtained from the nonlinear simulation for the

same input. Finally, simulated output from the simplified model is compared with the results obtained from the
nonlinear simulation for a given test input.

Description of the T700-GE-700 Engine in a Helicopter Application

The T700-GF_,-700 is a turboshaft engine used in pairs in the Army's Apache and Blackhawk helicopters. This 1600

horsepower-class, modular, two-spool engine (figure 1) consists of a gas generator section and a free power turbine
[8]. The gas generator section is made up of a five-stage axial and a single-stage centrifugal compressor, a low fuel

pressure flowthrough annular combustion chamber, and an air-cooled, two-stage, axial-flow, high-pressure turbine.

The free power turbine is a two-stage, uncooled, axial-flow type. There exists a one-way coupling between the

power turbine and the gas generator, i.e. the power turbine extracts work from the gas turbine cycle but does not

otherwise affect it. Through mechanical linkages and gears, the power turbine drives the rotor system of the

helicopter such that the rotor angular velocities are direcdy proportional to power turbine speed. Thus, in the
helicopter application, it seems natural to consider the power turbine as part of the rotor system, to which it is
mechanically linked [9].

The helicopter pilot commands an altitude change by moving the collective stick which alters the collective pitch
of the main rotor blades. A change in the blade pitch angle causes a change in load as lift is increased or decreased.



Thestandard T700 control system regulates power turbine speed with fuel flow to accommodate variations in the

load. The power turbine shaft is designed to operate at a constant 20,900 rpm. Changes in this power turbine speed

are induced by disturbances such as collective pitch changes, wind gusts, etc. As the engine reaches a steady state

condition, the control system causes the power turbine speed to return to its design point. The operating point of

the engine is defined by the gas generator speed as a percent of its design speed as in [10].

As seen in figure 2, the two engines work in tandem employing a torque-sharing arrangement to turn the rotor

system. In each engine, the power turbine's shaft is connected to the main gearbox through a nose box (a small

reducing gearbox which redirects the torque by 90 degrees) and a freewheeling clutch. The main rotor is driven by

a shaft projecting from the gearbox. The clutch allows the turbine to drive the rotor system but not vice versa. The
tail rotor is driven by a shaft extending from the transmission which is turned though a gear mechanism powered

by the main rotor. Thus, it spins as long as the main rotor is spinning, even if the engine is disengaged. When the

helicopter tries to climb, implying that torque must be increased, the control system increases the fuel flow to the

engines. The rotor applies a load to the turbine as long as they are engaged. A command to descend causes the

control system to reduce fuel flow, thereby reducing the torque applied to the rotor from the shaft. The rotor will

spin freely along with the shaft, but will only be driven by the shaft when friction slows the rotor down. This leads

to a situation where the load depends on the direction of motion of the helicopter. A command to climb causes a

significant load and the associated excursions in the state variables. On the other hand, a command to descend

causes a sudden drop in load because the rotor's inertia keeps it spinning at the desired velocity even though fuel

flow is reduced, meaning shaft torque is decreased.

Modeling of the Open Loop Dynamics of the Engine

As mentioned earlier, it is reasonable to consider the power turbine to be part of the load rather than the engine

because of the one-way coupling and the direct linkage between the power turbine and the rotor. Figure 3 shows

a block diagram of the open-loop engine/rotor system.

The basic objective of the control system of the engine is to maintain a constant power turbine speed in the presence

of load disturbances. This is accomplished by modulating the fuel flow rate and the variable compressor geometry.

However, for the purposes of this study and consistent with the nonlinear simulation, the variable geometry is

assumed to be scheduled open loop as a function of compressor inlet temperature and gas generator speed.

Following [9] and [11], the rotor system is treated as a separate dynamical system with engine shaft torque, Qs,

as input and the main rotor speed, NMR as output as shown in figure 3. The main rotor speed is assumed to be
proportional to the turbine speed by a constant gear ratio since the shaft elements between the hub and the power

turbine are nearly rigid [9].

In figure 3, the inputs to the engine are the power turbine speed, Np, and the fuel flow rate, W F. The outputs are

the gas generator speed, N_, engine torque transmitted by the power turbine shaft, Qs, compressor static discharge
pressure, Ps3, and power turbine inlet temperature, T4_ (figure 1). All variables are normalized by dividing them by

their values at 100% design gas generator speed. The pressure and the temperature are included in the output since

they are used by the control system. Power turbine speed is considered as an input to the engine in order to

reference the engine shaft torque with respect to that speed and to take into account the frictional losses.

In this study, the identification and modeling of the open loop dynamics of the helicopter engine as described above

is considered separately from the rotor system. Once the model of the engine is obtained it can be coupled with any

desired rotor system and the performance of the combined engine/rotor system can be analyzed.

The nonlinear open loop dynamics of the T700 helicopter engine can be described by the nonlinear differential
equations



x(t) --/(x(t),uC0) (1)

y(t) -- g(x(O) (2)

where x, u, and y are the state, the control and the output vectors, respectively. Linearizing these equations about

a nominal operating condition and discretizing yields

8x(k + 1) -- A 8x(k) + B 8u(k) (3)

By(k) = C 8x(k) (4)

where 8x, _u, and _y are the normalized deviations of the state, the input, and the output vectors about the nominal

operating conditions defined as

8x t-- , 8y_= , 8u t- (5)
x,_ y,, u,_

where the subscripts i, n and 0 refers to the i_ component, the normalization value and the nominal operating

conditions. The normalization values and the nominal operating condition values are given in Table 1.

It is assumed that the system described by equations (3) and (4) is stable and observable and the C matrix has full

row rank. Furthermore, this system is realized in ¢z-canonical form developed in [7] and [12], i.e., the following
relations hold:

C = [0: H -I]

A =A o + KHC, withA_o -- 0

(6)
(HC),a"o' = 0

(HC),A toK = O, for tt i > tt_ and k < _t i - _t

Here the subscripts rl and cj denote the i_ row and j* column respectively. Superscripts indicate exponentiation. The
structure matrix A o is lower left triangular and consists of zeros and ones only and is determined by the observability

indices, _tt, where i associates th with the i_houtput and tt = max {th} [13]. The matrix K is a deadbeat observer gain

[14]. A procedure for obtaining a state transformation matrix to represent a linear system in or-canonical form

is presented in the appendix together with an example.

System Identification Using the _.Canonical Form

System identification is defined [15] as the determination, on the basis of input and output, of a system within a

specified class of systems, to which the system under test is equivalent. In this study, the specified class of systems

considered for point models around nominal operating conditions is the class of linear systems described by equations
(3) and (4).

Selection of an appropriate input signal to generate the output data is an important step in identification problems.

A basic criterion for this selection is that the input/output data should be informative enough to discriminate between
different models among the class of models being considered [16]. Without this discrimination there is no guarantee

that the obtained parameters are the true parameters of the system. This criterion can be expressed mathematically



in terms of the covariance matrices of the input signals and the order of the system being identified [16]. Pseudo-
random multi-level sequences, such as those used in this study, are examples of input signals that can be used for

designing an informative experiment.

Once a class of systems and the input signal is selected, the identification problem becomes one of determining the

A, B, C matrices of the system and its structure. To accomplish this, a multivariable system identification technique

developed in [7] based on the or-canonical form is used. This technique is briefly explained below for completeness.

The expression for the state 8x(k) at time k of the system described by equations (3) through (6) is given by

Using the nilpotency of Ao the above equation yields

(7)

8x(k) = _A_'t[K:i-t B][_uY((:-i)]'f°rk>_i) (8)

This implies that

The observability indices, _tt, are evaluated from the observability matrix constructed from the input and output data

as explained in [7]. If the observability index, Ix, is known, then equation (9) contains the unknown A, B and C

matrices for given inputs and outputs. Using a data length of N and a least squares estimation technique, equation

(9) can be solved for the unknown parameters.

Linearized Point Models of the T700 Engine

Using the above modeling and identification procedure, the parameters of the linear point models are estimated at

five different operating points corresponding to different percentages of gas generator design speed levels as shown
in table 1. At each operating point, _t was found to be equal to 2. As mentioned earlier, the input vector, 8u,

represents the normalized deviations of the power turbine speed and the fuel flow rate from the nominal values (table

1) defined as

-- (10)
The output vector, By, represents the normalized deviations of the gas generator speed, engine shaft torque,

interturbine gas temperature, and the compressor exit static pressure from their nominal values. It is defined as

_)y--[SN 6Qs 8T4_ 8Ps,] r (11)

The validity of the estimated parameters of the system is checked by comparing the responses obtained from the

identified system with the response of the nonlinear simulation. The model of the identified system utilizes the

measurement of the input data, 8u, to predict the output, 8ym, and the state, 8xm, as



5x,,,(k + 1) -- ASx,,,(k) + B_)u(k) (12)

8y,,(k) --- CSx=(k) (13)

A tri-level pseudo-random sequence is used for the fuel flow input. Since the power turbine speed input is basically

used as a reference speed for engine shaft torque, a signal consisting of steps and ramps which cover he possible

range of power turbine speed is used for that input. Both of the input signals are shown in figure 4.

Most of the interaction between the rotor, drive train, and engine takes place at or below the main rotor frequency

of about 300 rpm (5 Hz). Thus it is important that the simulation be accurate in the range below 5 Hz. Based on

a priori knowledge about the maximum rise time of the engine, a clock time of 2 seconds and a length of 26 (the

number of unique outputs of the pseudo-random generator) is used with the tri-level sequence. The sampling time
is selected to be 0.1 second. This corresponds to a maximum frequency of 31.4 rad/sec (5 Hz), a minimum

frequency of 0.12 rad/sec (0.02 Hz) and a signal duration of 52 sec.

The test input signal consists of a full length tri-level pseudo-random sequence covering the same frequency range

as the one used for identification as shown in figure 5. In order to compare the responses of the identified system

with the responses obtained from the nonlinear simulation, a standard error of estimate (SEE) is defined as

I N

- 8y,(k) 
SEE = N (14)

_. 8yf(k)
k-1

Here the subscript i denotes the i_ element of the output vector By, and 8ym refers to the model output. The SEE's

obtained for the test signal, given in table 2, indicate very good agreement. Comparison of the responses of the

identified model to the responses obtained from the nonlinear simulation for the input signals shown in figure 5 at

an operating condition corresponding to 96% gas generator design speed are shown in figures 6 through 9. The tests

were done using the open loop nonlinear and linear point models of the T'/00. The figures show how closely the

linear point model matches the nonlinear simulation for perturbations about an operating point. These figures are

representative of the responses obtained at all operating points.

A Simplified Model of the TT00 Helicopter Engine

A simplified model of the T700 helicopter engine is obtained by linking the linear point models described above
through look-up tables in a computer program. In this scheme, the gas generator speed is checked after each time

step and the A, B and C matrices corresponding to the current operating conditions are used.

The computer program uses the actual (not normalized) values of the inputs and the outputs rather than the

normalized deviations. Hence the five point models used are defined as

x(k* 1) -- D x(k) . E u(k). F (15)

y(k) --- G x(k) + Z (16)

The values of these matrices for each of the operating conditions are given in table 3. The order of the system

model at each operating point, 8, equals the sum of the state variables times their corresponding observability inde×

at that operating point.



Thelinkedmodelwas tested for accuracy across a range of operating points by comparing its response with that of

the nonlinear simulation under simulated load conditions. A simple model representing the dynamometer described

in [1], is used as the simulated load. The load is variable, based on a simulated collective pitch input, XCPC. The

equations defining the load from [1] axe

N, = C,f(Qs- Q,)d, (17)

Qs = c2 (c3 - xCPC(C4 - c_ xcPc)) N_ (18)

where Qs and QR are the engine shaft torque and the required torque. The values of the constants are: C1=0.534753

1/(lb-fi-sec2), C2=1.86x 10 7 lb-fl-see a, C3=75.0, C4=0.1047, and C_=0.1085.

To test the validity of the simplified model, the profile of the collective pitch input, XCPC, shown in figure 10 was

used as input to the dynamometer model (equations (17) and (18)). Beginning with the initial conditions of the

engine and XCPC, the dynamometer model and closed loop nonlinear simulation were numerically integrated

simultaneously to produce the responses represented by solid lines in figures 12-16. The values of fuel flow rate,

Wr (figure 11), obtained from the control system portion of the nonlinear simulation, and power turbine speed, Np
(figure 12), obtained from the nonlinear simulation, were then used as input to the simplified model. Figure 12

shows the comparison of the N r values obtained directly from the nonlinear model and from the simplified model

determined by using the torque output, Qs, in the dynamometer model (equations (17) and (18)). As shown in

figures 13-16, the simplified model passes through several operating regions (as defined by Ng (figure 13)) and the
variables match those of the nonlinear simulation closely.

Conclusions

A multivariable system identification technique is used to obtain point models of the T700 helicopter engine from

data generated by a nonlinear simulation. These point models are used to obtain a simplified model of the engine.

The validity of the simplified model is checked by comparing the response of the nonlinear simulation with the

response obtained from the simplified model under simulated load conditions. The comparison indicates good

agreement between these responses. Therefore it has potential to he used with a model-based real time fault

detection and diagnostics design, as well as for open loop engine dynamics studies. Because it is in state space form,
the model is convenient for closed loop control analysis utilizing a user generated control law.

Appendix: The ¢x-Canonicai Form

Consider a linear, time-invariant system with an irreducible realization given as

qCk+l) = Dq(k) + Eu(k) (19)
y(k) -- Fq(k)

with observability indices _t, where i associates p_ with the i 'h output. Here the state vector, q, the input vector, u,

and the output vector, y, are nxl, taxi, and pxl respectively. A state transformation T can be used to represent this
system in c_-canonical form as

A = TDT -l , B = TE, C = FT -I , (20)

where the A and C matrices satisfy (6). The state transformation matrix T is obtained by using a reduced

observability matrix, V., which is obtained from the observability matrix, V, after deleting all rows which are linearly

dependent on the previous ones. The matrix T is defined [12] as



T&

(HI:)..1

Kt A DH I

H I A [D_t-ld I D_2-1d 2 .... D_,-ldp]

H A (FH1) -t

where (HF).., is the matrix obtained from I-IF after deleting the rows with associated observability indices _tt < t.
The column vectors, d_ denote those columns of V. "tsuch that

(21)

FrD"'-ldj-- 1 (22)

where the subscript rl denotes the i_ row. The deadbeat observer gain, K, for the transformed system of (6) is

obtained from that of the unlransformed system, K t, by

K-- TK v (23)

Example: Let (D,E,F) be an irreducible system with the realization

D-- kl k2 k3 , E-- • 2 , F-- 0 (24)

where, from V, the observability indices are _tt = 2 and R2 = I. For this system, the observability matrix, V, the

reduced observability matrix, V., and the vectors d 1 and d 2 are obtained as

V _.

1 0 0

0 0 1

0 1 0

'4 k,

k1 k2 k3

 A+kA k4+i k,+,A k,k,+k 

d I = ,

Hence H, K1 and H t can be evaluated as

, v -- v. -t = 0 , (25)

1

(26)



noting that

n I I1!1-_ k 2 , K 1 --

k_
o] [:]1kl._+k_k _ k3 ,H-- _k5

k4+k2ks +ksk6 k6

(27)

(HF).. 2 = [100],(HF)., 1 = -k_ 0

The transformation matrix T can be determined as

(28)

1ilT-- 0 .

[-k 5 0

Using the state transformation yields A, B, and C matrices as well as Ao using (6) and K as

a =

Ii kl +k3k_ _3]
k z , B :

k,+k,k, k6]

l°ilAo-- 0

0

kl +k3k_ _], K -- k2

k,t+k,k , k,J

(29)

(30)
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Table1.Operating Points and Normalization Values Used for Model Development

operating point: 1 2 3 4 5 normalization

%Np (%) 100.0 100.0 100.0 100.0 100.0 100.0

W_ (lb/sec) 0.0884 0.1170 0.1456 0.1742 0.2028 0.217

%N s (%) 87.5 91.4 94.5 96.7 98.5 99.5
Qs (ft-lb) 9369. 15309. 21443. 27303. 32619. 35150.

T4_ (deg R) 1472. 1578. 1675. 1778. 1896. 1954.

Ps3 (psi) 132.0 161.7 188.9 212.3 231.5 240.5

Gas generator design speed = 43,,700 rpm Power turbine design speed = 20,900 rpm

Table 2. Standard Error of Estimate (SEE) for each Point Model

operating point: 1 2 3 4 5

N s 0.0428 0.0368 0.0615 0.0488 0.0458
Qs 0.0746 0.0519 0.0578 0.0578 0.0568

T4_ 0.0556 0.0236 0.0350 0.0258 0.0238

Ps3 0.0597 0.0403 0.0440 0.0444 0.0441

Table 3. State Space Matrices at each Operating Point

Operating
Point

I

%Ns=87

D!

0.0000 0.0000 0.0000 0.0000-0.5693 0.0007 0.0029-0.0007

0.0000 0.0000 0.0000 0.0000-0.Ill2-0.0251 0.0340-0.1119

0.0000 0.0000 0.0000 0.0000 0.0060-0.0110-0.0156 0.0769

0.0000 0.0000 0.00019 0.0000-0.2870-0.0045 0.0265-0.1018

1.0000 0.0000 0.0000 0.0000 1.5083 0.0052 0.0244 0.0152

0.0000 1.0000 0.13000 0.0000 0.0540 1.0484 0.1716 0.0699
0.0000 0.0000 1.0000 0.0000 0.0513-0.0035 0.8414-0.1075

0.0000 0.0000 0.0000 1.0000 0.2935 0.0377 0.1450 1.0227

G_/10,000

0.0000 0.0000 0.0000 0.0000 0.0050 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 3.5150 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1954 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0241

Et Ft

0.0000-0.3489 0.0290

0.0039 -1.7818 -0.2349

-0.0001 -1.9504 0.1833

-0.0001 -1.1076 0.1074
0.0000 0.3906 -0.0355

-0.0038 1.6791 0.2350

0.0001 2.2966 -0.2097

0.0002 0.9788 -0.1086

Z,/1000

0.0875

9.3699
1.4723

0.1320

11



Operating
Point

2

%Ns=91

Operating
Point

3

%Ns=94

Operating
Point

4

%Ns=96

02

0.0000 0.0000 0.0000 0.0000 -0.0854 0.0042 0.0303 -0.2789

0.0000 0.0000 0.0000 0.0000 -0.1431 -0.0124 0.0263 -0.2383

0.0000 0.0000 0.0000 0.0000 0.1316-0.0214-0.0030 0.0115

0.0000 0.0000 0.0000 0.0000-0.0490 0.0054 0.0155-0.2032

1.0000 0.0000 0.0000 0.0000 0.9005 0.0387 0.1179 0.3565

0.0000 1.0000 0.0000 0.0000 0.2190 0.9875 0.0232 0.0826
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Figure1.mCrosssectionof a T700 turboshaft engine.
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